Multidepot Two-Echelon Vehicle Routing Problem for Earthwork Allocation Optimization

Author:

Zhang Qinglong1ORCID,Deng Naifu1ORCID,Zhu Yanwen1,Huang Zhenping1

Affiliation:

1. Department of Civil Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Prior to the construction of most engineering projects, earthwork is a complex and time-consuming task, requiring iterative operations in civil engineering. The effectiveness of earthworks determines the cost of many AEC (architecture, engineering, and construction) projects (e.g., road, embankment, railway, and slope engineering). As a result, creating effective earthwork planning is critical. The earthwork allocation problem is simplified in this study to the vehicle route problem (VRP), which is often studied in the field of transportation and logistics. An optimization model for the earthwork allocation path based on the modified genetic algorithm with a self-adaptive mechanism is developed to work out the global optimal hauling path for earthwork. The findings of the study are also used to shape the basic topographic shape of the Winter Olympic Skiing Course Project. Furthermore, a comparative study with the former methods is conducted to validate the performance of our proposed method on tackling such a multidepot two-echelon vehicle routing problem. Because of its flexibility, this optimization model is extremely compatible with various evolutionary methods in many fields, making future development viable and practicable.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference42 articles.

1. 3D-GIS based earthwork planning system for productivity improvement;S. H. Kang

2. Mathematical modeling of earthwork optimization problems;Y. Ji

3. An evolutionary multi-objective optimization system for earthworks

4. Block models for improved earthwork allocation planning in linear infrastructure construction

5. Spline technique for modeling roadway profile to minimize earthwork cost

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3