SPDNet: A Real-Time Passenger Detection Method Based on Attention Mechanism in Subway Station Scenes

Author:

Yang Jun1,Zheng Ying1ORCID,Yan KunPing1,Liu HongJiang1,Jin Kun1,Fan WenLin1,Han Xiao1,Zhang YaWen1

Affiliation:

1. China University of Mining and Technology-Beijing, No. 11, Xueyuan Road, Haidian District, Beijing, China

Abstract

In order to implement real-time detection of passengers in subway stations, this paper proposes the SPDNet based on YOLOv4. Aiming at the low detection accuracy of passengers in the subway station due to uneven light conditions, we introduce the attention mechanism CBAM to recalibrate the extracted features and improve the robustness of the network. For the crowded areas in the subway station, we use the K-means++ algorithm to generate anchors that are more consistent with the passenger aspect ratio based on the dataset KITTI, which mitigates the missing caused by the incorrect suppression of true positive boxes by the Nonmaximum Suppression algorithm. We train and test our SPDNet on the KITTI dataset and prove the superiority of our method. Then, we carry out transfer learning based on the subway surveillance video dataset collected by ourselves to make it conform to the distorted passenger targets under the angle of the surveillance camera. Finally, we apply our network in a Beijing subway station and achieve satisfactory results.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference42 articles.

1. Metro Passenger Flow Prediction Model Using Attention-Based Neural Network

2. Yolov4: optimal speed and accuracy of object detection;A. Bochkovskiy,2020

3. Cbam: convolutional block attention module;S. Woo

4. Scalable k-means++;B. Bahmani,2012

5. Vision meets robotics: The KITTI dataset

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3