Affiliation:
1. Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
2. Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
3. Hamza College of Pharmaceutical and Allied Health Sciences, Lahore, Pakistan
Abstract
Convolvulus arvensis L. is rich in phenolic compounds and traditionally used to treat wounds, skin ulcer, and inflammation. The current study is aimed at scientifically potentiating its traditional wound healing use. The methanolic extract of C. arvensis stem (CaME) was analyzed for HPLC and GC-MS analyses. The binding modes of active compounds were investigated against protein targets glycogen synthase kinase-3β (GSK-3β), transforming growth factor-beta (TGF-β), c-myc, and β-catenin by molecular docking followed by molecular dynamic simulations which revealed some conserved mode of binding as reported in crystal structures. The antioxidant potential of CaME was evaluated by in vitro methods such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, hydrogen peroxide scavenging, and ferric reducing power assays. Ointment formulations of 10 and 20% CaME were applied topically and evaluated for wound healing potency against the excisional wound on the skin of Wistar rats. Gentamycin (0.1%) served as standard therapy. The healing process was observed for 20 days in the form of wound size and epithelialization followed by histopathological evaluation of the wound area. Chemical characterization showed the presence of 7-hexadecenoic acid, 2-hexadecylicosan-1-ol, quercetin, gallic acid, ferulic acid, and other compounds. The plant extract exhibited significant in vitro antioxidant activity. The animals treated with 10% ointment showed moderate healing, whereas the treatment with 20% CaME revealed healing potential comparable to the standard 0.1% gentamycin as coevidenced from histopathological evaluation of skin. The study corroborates promising potential of C. arvensis on the healing of wounds, which possibly will be attributed to its antioxidant activity, fatty acids, quercetin, and gallic and caffeic acids, and binding potential of its phytoconstituents (phenolic acids) with wound healing targets.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献