Chaotic Enhanced Genetic Algorithm for Solving the Nonlinear System of Equations

Author:

Algelany A. M.12ORCID,El-Shorbagy M. A.13ORCID

Affiliation:

1. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Mathematics, Faculty of Sciences, Fayoum University, Fayoum 63514, Egypt

3. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

Abstract

Many engineering and scientific models are based on the nonlinear system of equations (NSEs), and their effective solution is critical for development in these domains. NSEs can be modeled as an optimization problem. So, the goal of this paper is to propose an optimization method, to solve the NSEs, which is called a chaotic enhanced genetic algorithm (CEGA). CEGA is a chaotic noise-based genetic algorithm (GA) that improves performance. CEGA will be configured so that it uses a new definition which is chaotic noise to overcome the drawbacks of optimization methods such as lack of diversity of solutions, the imbalance between exploitation and exploration, and slow convergence of the best solution. The goal of chaotic noise is to reduce the number of repeated solutions and iterations to speed up the convergence rate. In the chaotic noise, the chaotic logistic map is utilized since it has been used by numerous researchers and has proven its efficiency in increasing the quality of solutions and providing the best performance. CEGA is tested using many well-known NSEs. The suggested algorithm's results are compared to the original GA to prove the importance of the modifications introduced in CEGA. Promising results were obtained, where CEGA’s average percentage of improvement was about 75.99, indicating that it is quite effective in solving NSEs. Finally, comparing CEGA’s results with previous studies, statistical analysis by Friedman and Wilcoxon’s tests demonstrated its superiority and ability to solve this kind of problem.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3