RING Finger Protein 10 Regulates AP-1/Meox2 to Mediate Pirarubicin-Induced Cardiomyocyte Apoptosis

Author:

Shi Hongwei12ORCID,Duan Liang3,Lan Ying3,He Quan3,Pu Peng3ORCID,Tang Heng34ORCID

Affiliation:

1. Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

2. Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China

3. Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

4. Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China

Abstract

Pirarubicin (THP) is one of the classic chemotherapy drugs for cancer treatment. It is often clinically limited because of its cardiotoxicity. The occurrence and development of THP-mediated chemotherapy-related cardiotoxicity (CRC) may be reversed by RING finger protein 10 (RNF10). This study was performed with the aim of evaluating the inhibitory effect of RNF10 on THP-mediated CRC and its molecular mechanism. In vivo, we found that the expression of RNF10 decreased in THP-induced CRC rats, accompanied by Meox2 inhibition and AP-1 activation, resulting in increased cardiomyocyte apoptosis. After small interfering RNA (siRNA) and lentivirus transfection (Lv) of RNF10 in vitro, the expression of RNF10, Meox2, and AP-1 proteins and the degree of cardiomyocyte apoptosis were detected. We found that overexpression of RNF10 in H9C2 cardiomyocytes significantly promoted Meox2 and inhibited AP-1, alleviated apoptosis, and showed further inhibitory activity on THP-induced cardiomyocyte toxicity. Silencing RNF10 showed the opposite result. Our study showed that RNF10 inhibited THP-induced CRC through the activity of Meox2 and AP-1 proteins. RNF10 may be the next drug target for the treatment of CRC and other related cardiovascular diseases.

Funder

7th Wuhan Young and Middle-aged Backbone Talent of Medical Training Project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3