A Novel Method for Preparation of Zn-Doped CuInS2Solar Cells and Their Photovoltaic Performance

Author:

Peng Cheng-Hsiung1,Hwang Chyi-Ching2

Affiliation:

1. Department of Chemical and Materials Engineering, Minghsin University of Science and Technology, Hsinfeng, Hsinchu 304, Taiwan

2. Weapon System Center, Chung Cheng Institute of Technology, NDU, Daxi, Taoyuan 335, Taiwan

Abstract

In this study, a novel method was proposed to synthesize high quality Zn-doped CuInS2nanocrystals under high frequency magnetic field at ambient conditions. The magnetic Zn-doping gave superparamagnetic heating of the resulting nanocrystals via magnetic induction, causing an accelerating growth rate of the doped CuInS2under ambient conditions faster than conventional autoclave synthesis. Shape evolution of the Zn-doped CuInS2nanocrystals from initially spherical to pyramidal, to cubic, and finally to a bar geometry was detected as a function of time of exposure to magnetic induction. These colloidal solvents with different shaped nanocrystals were further used as “nanoink” to fabricate a simple thin film solar device; the best efficiency we obtained of these crystals was 1.01% with a 1.012 μm thickness absorber layer (bar geometry). The efficiency could be promoted to 1.44% after the absorber was thickened to 2.132 μm.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3