Time Resolved PIV Investigation on the Skin Friction Reduction Mechanism of Outer-Layer Vertical Blades Array

Author:

Park Seong Hyeon1,An Nam Hyun2,Yoon Hyun Sik3,Park Hyun3,Chun Ho Hwan3,Lee Inwon3

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 609-735, Republic of Korea

2. Department of Shipbuilding and Marine Engineering, Koje College, Gyeongsangnam-do 656-701, Republic of Korea

3. Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 609-735, Republic of Korea

Abstract

The drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins (2003), have been demonstrated by the recent towing tank measurements. From the drag measurement of flat plate with various vertical blades arrays by Park et al. (2011), a maximum 9.6% of reduction of total drag was achieved. The scale of blade geometry is found to be weakly correlated with outer variable of boundary layer. The drag reduction of 2.8% has been also confirmed by the model ship test by An et al. (2014). With a view to enabling the identification of drag reduction mechanism of the outer-layer vertical blades, detailed flow field measurements have been performed using 2D time resolved PIV in this study. It is found that the skin friction reduction effect is varied according to the spanwise position, with 2.73% and 7.95% drag reduction in the blade plane and the blade-in-between plane, respectively. The influence of vertical blades array upon the characteristics of the turbulent coherent structures was analyzed by POD method. It is observed that the vortical structures are cut and deformed by blades array and the skin frictional reduction is closely associated with the subsequent evolution of turbulent structures.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Codes for Limited Magnitude Error Correction in Multilevel Cell Memories;IEEE Transactions on Circuits and Systems I: Regular Papers;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3