Photonic Material Selection of Scintillation Crystals Using Monte Carlo Method for X-Ray Detection in Industrial Computed Tomography

Author:

He Peng1ORCID,Wei Biao1,Zhou Mi1,Feng Peng1,Chen Mianyi1

Affiliation:

1. The Key Lab of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China

Abstract

Currently industrial X-CT system is designed according to characteristics of test objects, and test objects determine industrial X-CT system structure, X-ray detector/sensor property, scanning mode, and so forth. So there are no uniform standards for the geometry size of scintillation crystals of detector. Moreover, scintillation crystals are usually mixed with some highly toxic impurity elements, such as Tl and Cd. Thus, it is indispensable for establishing guidelines of engineering practice to simulate X-ray detection performances of different scintillation crystals. This paper focuses on how to achieve high efficient X-ray detection in industrial X-CT system which used Monte Carlo (MC) method to study X-ray energy straggling characteristics, full energy peak efficiency, and conversion efficiency of some scintillation crystals (e.g., CsI(Tl), NaI(Tl), and CdWO4) after X-ray interacted with these scintillation crystals. Our experimental results demonstrate that CsI(Tl) scintillation crystal has the advantages of conversion efficiency, spectral matching, manufacturing process, and full energy peak efficiency; it is an ideal choice for high efficient X-ray detection in industrial X-CT system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3