Nonnegative Tensor-Based Linear Dynamical Systems for Recognizing Human Action from 3D Skeletons

Author:

Li Guang1ORCID,Liu Kai1ORCID,Ding Wenwen1ORCID,Cheng Fei1ORCID,Ding Chongyang1ORCID

Affiliation:

1. School of Computer Science and Technology, Xidian University, Xi’an, China

Abstract

Recently, skeleton-based action recognition has become a very important topic in the field of computer vision. It is a challenging task to accurately build a human action model and precisely distinguish similar human actions. In this paper, an action (skeleton sequence) is represented as a third-order nonnegative tensor time series to capture the original spatiotemporal information of the action. As a linear dynamical system (LDS) is an efficient tool for encoding the spatiotemporal data in various disciplines, this paper proposes a nonnegative tensor-based LDS (nLDS) to model the third-order nonnegative tensor time series. Nonnegative Tucker decomposition (NTD) is utilized to estimate the parameters of the nLDS model. These parameters are used to build extended observability sequence OT for the action, which implies that OT can be considered as the feature descriptor of the action. To avoid the limitations introduced by approximating OT with a finite-order matrix, we represent an action as a point on infinite Grassmann manifold comprising the orthonormalized extended observability sequences. The classification task can be performed by dictionary learning and sparse coding on the infinite Grassmann manifold. The experimental results on the MSR-Action3D, UTKinect-Action, and G3D-Gaming datasets demonstrate that the proposed approach achieves a better performance in comparison with the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3