Robust Speed Tracking Control for a Micro Turbine as a Distributed Energy Resource via Feedback Domination and Disturbance Observer

Author:

Xu Ancheng1,Chen Hui2ORCID

Affiliation:

1. Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China

2. College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

Micro turbine (MT) is characterized with complex dynamics, parameter uncertainties, and variable working conditions. In this paper, a novel robust controller is investigated for a single-shaft micro turbine as a distributed energy resource by integrating a feedback domination control technique and a feedforward disturbance compensation. An active estimation process of the mismatched disturbances is firstly enabled by constructing a disturbance observer. Secondly, we adopt a feedback domination technique, rather than popularly used feedback linearization methods, to handle the system nonlinearities. In an explicit way, the composite controllers are then derived by recursive design based on Lyapunov theory while a global input-to-state stability can be guaranteed. Abundant comparison simulation results are provided to demonstrate the effectiveness of the proposed scheme, which not only perform an improved closed-loop control performance comparing to all existing results, but also render a simple control law which will ease its practical implementation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3