Affiliation:
1. Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, 20131 Aguascalientes, AGS, Mexico
Abstract
We depart from the well-known one-dimensional Fisher’s equation from population dynamics and consider an extension of this model using Riesz fractional derivatives in space. Positive and bounded initial-boundary data are imposed on a closed and bounded domain, and a fully discrete form of this fractional initial-boundary-value problem is provided next using fractional centered differences. The fully discrete population model is implicit and linear, so a convenient vector representation is readily derived. Under suitable conditions, the matrix representing the implicit problem is an inverse-positive matrix. Using this fact, we establish that the discrete population model is capable of preserving the positivity and the boundedness of the discrete initial-boundary conditions. Moreover, the computational solubility of the discrete model is tackled in the closing remarks.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献