Exploring the Epidemic Spreading in a Multilayer Metapopulation Network by considering Individuals’ Periodic Travelling

Author:

Han Dun12ORCID,Shao Qi1,Li Dandan3ORCID

Affiliation:

1. Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. Adaptive Networks and Control Laboratory, Department of Electronic Engineering, Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, Shanghai 200433, China

3. School of Management, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Abstract

The convenience of transportation brings the diversity of individuals’ travelling modes; in this paper, we present an improved epidemic diffusion model in a multilayer metapopulation network. Firstly, we construct the metapopulation network with different travelling ways, and then, the epidemic spreading threshold is calculated by means of the mean-field method. Taking the periodicity of individuals’ travelling into account, we further explore the epidemic diffusion model with individuals’ periodic travelling and deduce the epidemic spreading threshold using the Perron–Frobenius theorem. Our results show that if all individuals in each area decide to move, the epidemic threshold can be effectively raised while each individual chooses an unbiased region to arrive. In addition, with the increase of individuals’ mobility rate or regional heterogeneous infection coefficient, the fluctuation range of the density of infected becomes larger, while the fluctuation period is almost unchanged. However, the change of individuals’ periodic motion could cause the change of the fluctuation period of infected density. We try to provide a new perspective for the research of metapopulation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3