Affiliation:
1. Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
Abstract
Background. In primary and revision total hip arthroplasty, to prevent perioperative complications, the prediction of the optimal implant size is essential. Using three-dimensional computed tomography-based postoperative evaluation software, we explored the accuracy and the precision of measurement of the size, alignment, and position of the prosthetic components after total hip arthroplasty. Methods. Using postoperative evaluation software, the postoperative computed tomography data from 20 hips in 20 patients were evaluated. The component size, alignment, and three-dimensional positioning of the cup and stem were assessed. The concordance rates of the component, repeatability (intraobserver reliability), and reproducibility (interobserver reliability) of postoperative evaluation were calculated. The radiographic inclination and radiographic anteversion of the cup, anteversion, varus–valgus angle, and flexion–extension angles of the stem were measured for alignment. The implant positioning was measured along three axes, namely, X-axis (transverse), Y-axis (sagittal), and Z-axis (longitudinal). Results. The concordance rates of all parts are above 94%. The intraobserver and interobserver intraclass correlation coefficients of alignment measurement were very good for both cup (0.879–0.964) and stem (0.973–0.996). The intraobserver and interobserver intraclass correlation coefficients of cup positioning were very good (0.961–0.987) for all axes. The intraobserver and interobserver intraclass correlation coefficients of implant positioning were very good for the stem (0.879–0.995) for all axes. Conclusions. Computed tomography-based postoperative evaluation software was able to evaluate the size and position of total hip implants with high reproducibility.
Funder
Japan Society for the Promotion of Science
Subject
Orthopedics and Sports Medicine