A Metabolism-Based Interpretable Machine Learning Prediction Model for Diabetic Retinopathy Risk: A Cross-Sectional Study in Chinese Patients with Type 2 Diabetes

Author:

Zong Guo-Wei12ORCID,Wang Wan-Ying23ORCID,Zheng Jun4ORCID,Zhang Wei3ORCID,Luo Wei-Ming3ORCID,Fang Zhong-Ze234ORCID,Zhang Qiang4ORCID

Affiliation:

1. Department of Mathematics, School of Public Health, Tianjin Medical University, Tianjin, China

2. Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China

3. Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China

4. Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China

Abstract

The burden of diabetic retinopathy (DR) is increasing, and the sensitive biomarkers of the disease were not enough. Studies have found that the metabolic profile, such as amino acid (AA) and acylcarnitine (AcylCN), in the early stages of DR patients might have changed, indicating the potential of metabolites to become new biomarkers. We are amid to construct a metabolite-based prediction model for DR risk. This study was conducted on type 2 diabetes (T2D) patients with or without DR. Logistic regression and extreme gradient boosting (XGBoost) prediction models were constructed using the traditional clinical features and the screening features, respectively. Assessing the predictive power of the models in terms of both discrimination and calibration, the optimal model was interpreted using the Shapley Additive exPlanations (SHAP) to quantify the effect of features on prediction. Finally, the XGBoost model incorporating AA and AcylCN variables had the best comprehensive evaluation ( ROCAUC = 0.82 , PRAUC = 0.44 , Brier score = 0.09 ). C18 : 1OH lower than 0.04 μmol/L, C18 : 1 lower than 0.70 μmol/L, threonine higher than 27.0 μmol/L, and tyrosine lower than 36.0 μmol/L were associated with an increased risk of developing DR. Phenylalanine higher than 52.0 μmol/L was associated with a decreased risk of developing DR. In conclusion, our study mainly used AAs and AcylCNs to construct an interpretable XGBoost model to predict the risk of developing DR in T2D patients which is beneficial in identifying high-risk groups and preventing or delaying the onset of DR. In addition, our study proposed possible risk cut-off values for DR of C18 : 1OH, C18 : 1, threonine, tyrosine, and phenylalanine.

Funder

Liaoning Province Scientific and Technological Project

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3