Numerical Simulation of the Erosion Effect Caused by the Impact of High-Velocity Landslide

Author:

Qiao Cheng12ORCID,Chen Youcai1,Chen Xuelin1

Affiliation:

1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

2. Engineering Research Center of Underground Mine Construction, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Due to the complex composition consisting of solid particles and fluids with different physical properties, geophysical flows often show complex and diverse dynamic characteristics. For landslides with high water content, there are complex interactions between the solid and fluid phases. Therefore, it is difficult to grasp the dynamic characteristics and the disaster scale of this type of landslide, especially under complex terrain and ground conditions. The drag effect is an important aspect of the interaction between the solid and liquid phases. We optimized the enhanced drag coefficient formula to further consider the effect of high-velocity movement. By considering the volume fraction relationships between different phases, a mechanical erosion rate model is utilized for multiphase flows. Based on the r.avaflow numerical tool and the multiphase mass flow model, considering the interphase interaction characteristics of high-velocity liquefied landslides, we analyzed the influence of the obstruction of buildings and their entrainment into the landslide on the dynamic characteristics and hazard range of the Shenzhen 2015 landslide. This provides a reference for the analysis of complex geophysical disasters based on the multiphase mass flow model. Importantly, we have demonstrated the reduced mobility of the considered erosive impact event, which is in line with the physical principle.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3