The Value of Artificial Intelligence Film Reading System Based on Deep Learning in the Diagnosis of Non-Small-Cell Lung Cancer and the Significance of Efficacy Monitoring: A Retrospective, Clinical, Nonrandomized, Controlled Study

Author:

Chen Yunbing1,Tian Xin1,Fan Kai1,Zheng Yanni1,Tian Nannan1,Fan Ka1ORCID

Affiliation:

1. Department of Computerized Tomography, Jincheng People’s Hospital (Jincheng Hospital Affiliated to Changzhi Medical College), No. 456 Wenchang East Street, Jincheng, 048026 Shanxi, China

Abstract

Objective. To explore the value of artificial intelligence (AI) film reading system based on deep learning in the diagnosis of non-small-cell lung cancer (NSCLC) and the significance of curative effect monitoring. Methods. We retrospectively selected 104 suspected NSCLC cases from the self-built chest CT pulmonary nodule database in our hospital, and all of them were confirmed by pathological examination. The lung CT images of the selected patients were introduced into the AI reading system of pulmonary nodules, and the recording software automatically identified the nodules, and the results were compared with the results of the original image report. The nodules detected by the AI software and film readers were evaluated by two chest experts and recorded their size and characteristics. Comparison of calculation sensitivity, false positive rate evaluation of the NSCLC software, and physician’s efficiency of nodule detection whether there was a significant difference between the two groups. Results. The sensitivity, specificity, accuracy, positive predictive rate, and false positive rate of NSCLC diagnosed by radiologists were 72.94% (62/85), 92.06% (58/63), 81.08% (62+58/148), 92.53% (62/67), and 7.93% (5/63), respectively. The sensitivity, specificity, accuracy, positive prediction rate, and false positive rate of AI film reading system in the diagnosis of NSCLC were 94.12% (80/85), 77.77% (49/63), 87.161% ( 80 + 49 /148), 85.11% (80/94), and 22.22% (14/63), respectively. Compared with radiologists, the sensitivity and false positive rate of artificial intelligence film reading system in the diagnosis of NSCLC were higher ( P < 0.05 ). The sensitivity, specificity, accuracy, positive prediction rate, and negative prediction rate of artificial intelligence film reading system in evaluating the efficacy of patients with NSCLC were 87.50% (63/72), 69.23% (9/13), 84.70% ( 63 + 9 )/85, 94.02% (63/67), and 50% (9/18), respectively. Conclusion. The AI film reading system based on deep learning has higher sensitivity for the diagnosis of NSCLC than radiologists and can be used as an auxiliary detection tool for doctors to screen for NSCLC, but its false positive rate is relatively high. Attention should be paid to identification. Meanwhile, the AI film reading system based on deep learning also has a certain guiding significance for the diagnosis and treatment monitoring of NSCLC.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference31 articles.

1. Epidemiology of Lung Cancer

2. Diagnosis and Molecular Classification of Lung Cancer

3. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): an update;S. Jonna;Discovery Medicine,2019

4. The biology and management of non-small cell lung cancer

5. Epidemiology of lung cancer in China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3