Affiliation:
1. College of Power Engineering, Naval University of Engineering, 717 Liberation Avenue, Wuhan 430033, China
2. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, 717 Liberation Avenue, Wuhan 430033, China
Abstract
Near-field acoustic holography (NAH) is an effective tool for realizing accurate sound field reconstruction in three-dimensional space on the prerequisite that appropriate elementary wave functions are selected or constructed to match the characteristics of the sound sources. However, for elongated sources, common wave functions, i.e., plane, cylindrical, or spherical waves, sometimes do not perform well during the sound field projections. To solve this problem, statistically optimized near-field acoustical holography combined with prolate spheroidal wave functions is proposed. In the approach, the sound field is expanded by a series of prolate spheroidal wave functions, whose wavefronts can be set nearly conformal to the elongated sources. Based on these wave functions, fewer expansion terms are required to model the sound field, and the need for regularization can be reduced during the inverse solving process. Therefore, the accuracy of the reconstruction results can be further improved. Numerical simulations are conducted by two types of elongated source models, namely, spatially separated and extended. The results show that the proposed method can effectively reconstruct the sound pressures of elongated sources and perform robustly across a wide frequency range. Simultaneously, a designed experiment is carried out in an anechoic chamber, which demonstrates the feasibility of the proposed method.
Funder
National Science Fund for Distinguished Young Scholars
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献