Analytical Model for Travel Time-Based BPR Function with Demand Fluctuation and Capacity Degradation

Author:

Zhang Junjie12,Liu Miaomiao3,Zhou Bin1ORCID

Affiliation:

1. School of Electronic and Information Engineering, Beihang University, No. 37 Xue Yuan Lu, Hai Dian Zone, Beijing, China

2. Hefei Innovation Research Institute, Beihang University, No. A1 Intelligent Industrial Park of New Station High-Tech Industrial Development Zone, Hefei, Anhui, China

3. Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control, School of Transportation Science and Engineering, Beihang University, No. 37 Xue Yuan Lu, Hai Dian Zone, Beijing, China

Abstract

This study presents a stochastic model based on the link performance function of the Bureau of Public Roads to assess the reliability of travel time in the transportation network. Empirical studies have verified that the variability of travel time can be ascribed to demand fluctuation and the degradation of the capacity of the stochastic network. The mean-variance approach in previous research presented the budget model of travel time, with the capacity of the stochastic network and elastic demand as the sources of uncertainty of travel time. Previous research was devoted to the study of estimation of travel time considering a single factor or a factor independent of these two sources. Meanwhile, this study introduces the current degeneration coefficient of capacity (CDC) and the density distribution function of road section saturation (DDFS) with simultaneous network capacity and traffic demand. Sensitivity analysis method for the parameters of the proposed model is investigated theoretically using the sensitivity model of traffic capacity degradation. Results of case analysis show that the DDFS and CDC have an effect on the decision of travelers regarding the choice of route. The empirical analysis also illustrates the effectiveness of the computational approach and the proposed model.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3