MGRO Recognition Algorithm-Based Artificial Potential Field for Mobile Robot Navigation

Author:

Pang Ming1,Meng Zhankai1,Zhang Wenbo1,Ru Changhai12

Affiliation:

1. College of Automation, Harbin Engineering University, Harbin 150001, China

2. College of Mechotronics Engineering, Soochow University, Suzhou 215006, China

Abstract

This paper describes a novel recognition algorithm which includes mean filter, Gaussian filter, Retinex enhancement method, and Ostu threshold segmentation method (MGRO) for the navigation of mobile robots with visual sensors. The approach includes obstacle visual recognition and navigation path planning. In the first part, a three-stage method for obstacle visual recognition is constructed. Stage 1 combines mean filtering and Gaussian filtering to remove random noise and Gauss noise in the environmental image. Stage 2 increases image contrast by using the Retinex enhancement method. Stage 3 uses the Ostu threshold segmentation method to achieve obstacle feature extraction. A navigation method based on the auxiliary visual information is constructed in the second part. The method is based on the artificial potential field (APF) method and is able to avoid falling into local minimum by changing the repulsion field function. Experimental results confirm that obstacle features can be extracted accurately and the mobile robot can avoid obstacles safely and arrive at target positions correctly.

Funder

International S&T Cooperation Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on path planning of three-neighbor search A* algorithm combined with artificial potential field;International Journal of Advanced Robotic Systems;2021-05-01

2. Obstacle-avoiding intelligent algorithm for quad wheel robot path navigation;International Journal of Intelligent Unmanned Systems;2020-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3