ColoRectalCADx: Expeditious Recognition of Colorectal Cancer with Integrated Convolutional Neural Networks and Visual Explanations Using Mixed Dataset Evidence

Author:

Narasimha Raju Akella S.1ORCID,Jayavel Kayalvizhi1ORCID,Rajalakshmi T.2ORCID

Affiliation:

1. Department of Networking and Communications, School of Computing, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, India

2. Department of Electronics and Communication Engineering, School of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, India

Abstract

Colorectal cancer typically affects the gastrointestinal tract within the human body. Colonoscopy is one of the most accurate methods of detecting cancer. The current system facilitates the identification of cancer by computer-assisted diagnosis (CADx) systems with a limited number of deep learning methods. It does not imply the depiction of mixed datasets for the functioning of the system. The proposed system, called ColoRectalCADx, is supported by deep learning (DL) models suitable for cancer research. The CADx system comprises five stages: convolutional neural networks (CNN), support vector machine (SVM), long short-term memory (LSTM), visual explanation such as gradient-weighted class activation mapping (Grad-CAM), and semantic segmentation phases. Here, the key components of the CADx system are equipped with 9 individual and 12 integrated CNNs, implying that the system consists mainly of investigational experiments with a total of 21 CNNs. In the subsequent phase, the CADx has a combination of CNNs of concatenated transfer learning functions associated with the machine SVM classification. Additional classification is applied to ensure effective transfer of results from CNN to LSTM. The system is mainly made up of a combination of CVC Clinic DB, Kvasir2, and Hyper Kvasir input as a mixed dataset. After CNN and LSTM, in advanced stage, malignancies are detected by using a better polyp recognition technique with Grad-CAM and semantic segmentation using U-Net. CADx results have been stored on Google Cloud for record retention. In these experiments, among all the CNNs, the individual CNN DenseNet-201 (87.1% training and 84.7% testing accuracies) and the integrated CNN ADaDR-22 (84.61% training and 82.17% testing accuracies) were the most efficient for cancer detection with the CNN+LSTM model. ColoRectalCADx accurately identifies cancer through individual CNN DesnseNet-201 and integrated CNN ADaDR-22. In Grad-CAM’s visual explanations, CNN DenseNet-201 displays precise visualization of polyps, and CNN U-Net provides precise malignant polyps.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference65 articles.

1. Lung and colon cancer histopathological image dataset (LC25000);A. A. Borkowski

2. Automatic Polyp Detection in Endoscopy Videos: A Survey

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3