Defect Point Location Method of Civil Bridge Based on Internet of Things Wireless Communication

Author:

Yan Xiaofeng1ORCID,Liu Zedong1,Zhuang Zijing1,Miao Yong1

Affiliation:

1. College of Civil Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China

Abstract

With the growth of the country’s comprehensive strength, China’s road and bridge traffic is also growing rapidly. Therefore, the maintenance of highway bridge pavement has become extremely important. The main manifestation of highway bridge deck diseases is bridge deck cracks. If the bridge deck cracks are found in the early stage of damage and solved in time, it will undoubtedly greatly reduce the maintenance cost and care and ensure that the road can be driven safely. At present, the detection of highway bridge defects is mainly based on human vision, but this kind of artificial visual inspection is difficult to complete efficiently. The purpose of the article was to study image recognition techniques and measure the surface damage to bridge superstructures. It has also developed an intelligent software system that can measure and identify cracks under bridges. Aiming at the compatibility problem of wireless communication front end caused by the difference in wireless communication protocols, this study designs a high-applicability front-end control interface for wireless communication. After testing, data can be sent and received when the I/O mode rate drops to 10 Kbps. This method is severely limited and is not suitable for IoT applications with low power consumption and low frequency. It uses the SPI interface for communication and can send and receive normally at different rates, with an upper limit of 8 Mbps. This method consumes a little more pins, but the clock signal is stable, and the transmission performance can meet the needs of most applications.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3