Removal of High-Concentration Sulfate from Seawater by Ettringite Precipitation

Author:

Hou Jian1ORCID,Alghunaimi Fahd2,Han Ming2,Aljuryyed Norah2

Affiliation:

1. Beijing Research Center, Aramco Asia, Beijing 100102, China

2. EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31311, Saudi Arabia

Abstract

Due to the worldwide scarcity of fresh water, seawater becomes an alternative base fluid in hydraulic fracturing for oil and gas production. However, the injection of seawater that contains high concentration of sulfate will induce the scale formation and thus reduce hydrocarbon production. One of the most effective ways to solve this problem is to remove sulfate ions from seawater before fracturing application. The objective of this study is to develop an effective and environment-friendly approach to remove sulfate ions from seawater based on coprecipitation of SO42− with NaAlO2 and CaO as ettringite (Ca6Al2(SO4)3(OH)12·26H2O). Residual sulfate concentration in treated seawater was determined when NaAlO2 and CaO dosed at different molar ratios to sulfate. Results showed the efficiency of sulfate removal was more than 90% (4290 ppm to ∼400 ppm) when Al : Ca : S = 2 : 6 : 1. It was found the sulfate precipitation completed in 15 mins with stirring under an alkaline condition (pH ≈ 12) and was not affected by temperature (15°C to 45°C). Increasing the Na+ concentration from 0 to 25,000 ppm in waters resulted in the increment of residual sulfate concentration from 250 to ∼600 ppm, decreasing the removal efficiency. Besides, the analysis of Ca2+ and Mg2+ in treated seawater showed the Ca2+ concentrations were on the similar level as that before the treatment and Mg2+ was removed in the precipitation process, which is beneficial to the application of the treated seawater. The morphology and element analysis of the collected precipitates showed that the ettringites were in a layered shape with composition between Ca6Al2(SO4)3(OH)12 and Ca4Al2(SO4)(OH)12 at the optimized chemical dosage; therefore, the developed ettringite precipitation method could effectively remove sulfate from seawater without toxic chemicals involved, which benefits seawater hydraulic fracturing in an economic way, and this contributes to water sustainability.

Funder

Saudi Aramco

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3