A Model for Trend Analysis in the Online Shopping Scenario Using Multilevel Hesitation Pattern Mining

Author:

Dixit Abhishek1ORCID,Tiwari Akhilesh1ORCID,Gupta R. K.1ORCID

Affiliation:

1. Madhav Institute of Technology & Science, Gwalior, India

Abstract

The present paper proposes a new model for the exploration of hesitated patterns from multiple levels of conceptual hierarchy in the transactional dataset. The usual practice of mining patterns has focused on identifying frequent patterns (i.e., which occur together) in the transactional dataset but uncovers the vital information about the patterns which are almost frequent (but not exactly frequent) called “hesitated patterns.” The proposed model uses the reduced minimum support threshold (contains two values: attractiveness and hesitation) and constant minimum confidence threshold with the top-down progressive deepening approach for generating patterns and utilizing the apriori property. To validate the model, an online purchasing scenario of books through e-commerce-based online shopping platforms such as Amazon has been considered and shown that how the various factors contributed towards building hesitation to purchase a book at the time of purchasing. The present work suggests a novel way for deriving hesitated patterns from multiple levels in the conceptual hierarchy with respect to the target dataset. Moreover, it is observed that the concepts and theories available in the existing related work Lu and Ng (2007) are only focusing on the introductory aspect of vague set theory-based hesitation association rule mining, which is not useful for handling the patterns from multiple levels of granularity, while the proposed model is complete in nature and addresses the very significant and untouched problem of mining “multilevel hesitated patterns” and is certainly useful for exploring the hesitated patterns from multiple levels of granularity based on the considered hesitation status in a transactional dataset. These hesitated patterns can be further utilized by decision makers and business analysts to build the strategy on how to increase the attraction level of such hesitated items (appeared in a particular transaction/set of transactions in a given dataset) to convert their state from hesitated to preferred items.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3