Graph Convolutional Network for Word Sense Disambiguation

Author:

Zhang Chun-Xiang1ORCID,Liu Rui1ORCID,Gao Xue-Yao1ORCID,Yu Bo1ORCID

Affiliation:

1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Word sense disambiguation (WSD) is an important research topic in natural language processing, which is widely applied to text classification, machine translation, and information retrieval. In order to improve disambiguation accuracy, this paper proposes a WSD method based on the graph convolutional network (GCN). Word, part of speech, and semantic category are extracted from contexts of the ambiguous word as discriminative features. Discriminative features and sentence containing the ambiguous word are used as nodes to construct the WSD graph. Word2Vec tool, Doc2Vec tool, pointwise mutual information (PMI), and TF-IDF are applied to compute embeddings of nodes and edge weights. GCN is used to fuse features of a node and its neighbors, and the softmax function is applied to determine the semantic category of the ambiguous word. Training corpus of SemEval-2007: Task #5 is adopted to optimize the proposed WSD classifier. Test corpus of SemEval-2007: Task #5 is used to test the performance of WSD classifier. Experimental results show that average accuracy of the proposed method is improved.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Approach for Kashmiri Word Sense Disambiguation;Advances in Computational Intelligence and Robotics;2024-02-27

2. Conceptualizing Discussions on the Dark Web: An Empirical Topic Modeling Approach;Complexity;2024-02-14

3. Challenges and Overcoming Methods for Word Sense Disambiguation;2023 International Conference on Intelligent Technologies for Sustainable Electric and Communications Systems (iTech SECOM);2023-12-18

4. Discrete Student Psychology Optimization Algorithm for the Word Sense Disambiguation Problem;Arabian Journal for Science and Engineering;2023-06-24

5. Enhancing the Performance of WSD Task Using Regularized GNNs With Semantic Diffusion;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3