Affiliation:
1. Shenyang Jianzhu University, Liaoning, Shenyang 110168, China
2. Liaoning Province Big Data Management and Analysis Laboratory of Urban Construction, Shenyang 110168, China
3. Northeastern University, Liaoning, Shenyang 110819, China
Abstract
Wireless sensor networks are widely used in many fields, such as medical and health care, military monitoring, target tracking, and people’s life, because of their advantages of convenient deployment, low cost, and good concealment. However, due to the low battery capacity of sensor nodes and environmental changes, the energy consumption of nodes is serious and the accuracy of data collection is low. In the data collection method of multiple random paths, due to the uneven geographical distribution between nodes and the influence of the environment, it is easy to cause the communication between nodes to be blocked and the construction of random paths to fail. This paper proposes an efficient data collection algorithm for this problem. The algorithm is improved on the basis of the random node selection algorithm. This method can effectively avoid the failure of random path node selection and improve the node selection of random path in wireless sensor networks. Then, the sensor network in the dynamic environment is analyzed based on the static environment. An efficient data collection algorithm based on the position prediction of extreme learning machines is proposed. This method uses extreme learning machine methods to perform trajectory prediction for nodes in a dynamic environment.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献