Efficient Data Collection Method in Sensor Networks

Author:

Cao Keyan12ORCID,Liu Haoli1,Liu Yefan1,Meng Gongjie1,Ji Si3,Li Gui1

Affiliation:

1. Shenyang Jianzhu University, Liaoning, Shenyang 110168, China

2. Liaoning Province Big Data Management and Analysis Laboratory of Urban Construction, Shenyang 110168, China

3. Northeastern University, Liaoning, Shenyang 110819, China

Abstract

Wireless sensor networks are widely used in many fields, such as medical and health care, military monitoring, target tracking, and people’s life, because of their advantages of convenient deployment, low cost, and good concealment. However, due to the low battery capacity of sensor nodes and environmental changes, the energy consumption of nodes is serious and the accuracy of data collection is low. In the data collection method of multiple random paths, due to the uneven geographical distribution between nodes and the influence of the environment, it is easy to cause the communication between nodes to be blocked and the construction of random paths to fail. This paper proposes an efficient data collection algorithm for this problem. The algorithm is improved on the basis of the random node selection algorithm. This method can effectively avoid the failure of random path node selection and improve the node selection of random path in wireless sensor networks. Then, the sensor network in the dynamic environment is analyzed based on the static environment. An efficient data collection algorithm based on the position prediction of extreme learning machines is proposed. This method uses extreme learning machine methods to perform trajectory prediction for nodes in a dynamic environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3