Influence of the Decelerator Grid on the Optical Performance of the Ion Thruster

Author:

Lu Chang12ORCID,Zhao Yide2ORCID,Wan Jie3ORCID,Chu Yuchuan4ORCID,Zheng Liang5ORCID,Cao Yong1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055 Shenzhen, China

2. Lanzhou Institute of Space Technology Physics, 730000 Lanzhou, China

3. Fundamental Space Science Research Center, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China

4. School of Mechanical Engineering, Dongguan University of Technology, 523808 Dongguan, China

5. School of Science, Harbin Institute of Technology, Shenzhen, 518055 Shenzhen, China

Abstract

In order to reduce the erosion of the ion thruster accelerator grid, which is caused by charge-exchange (CEX) ions, the 2-grid optical system is added to a decelerator grid to block the reflux CEX ions. The previous experiment and simulation results have proven that the decelerator grid can effectively reduce the Pit and Groove erosion. However, the influence of the decelerator grid on the optical performance has not yet been studied well. In this paper, a three-dimensional Immersed Finite Element Method-Particle in Cell-Monte Carlo Collision (IFE-PIC-MCC) algorithm was adopted to investigate the effect of the decelerator grid on the optical performance under crossover and normal circumstances. Results show that the decelerator grid has no effect on the focusing state and the distribution of beam ions. It also has little effect on the CEX ions from the upstream and extraction (center) regions. However, it has great influence on the downstream CEX ions. When the upstream plasma number density is small, the decelerator grid will cause most of the downstream reflux CEX ions to impinge on the accelerator grid aperture barrel, resulting in the significant increase of the Barrel erosion of the accelerator grid. With the increase of the upstream plasma number density, the downstream reflux CEX ions tend to impact the downstream surface of the decelerator grid, which means the decelerator grid begins to block the downstream backflow of CEX ions.

Funder

Shenzhen Technology Projects

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3