Wetland Ecotourism Development Using Deep Learning and Grey Clustering Algorithm from the Perspective of Sustainable Development

Author:

Shao Bintao1,Chen Longtao2,Xing Nian3ORCID

Affiliation:

1. School of Economics and Management, Shihezi University, Shihezi, Xinjiang 832000, China

2. School of International Economy and Trade, Wuxi University, Wuxi 214105, China

3. School of Journalism and Communication, Sichuan International Studies University, Chongqing 400031, China

Abstract

The purpose is to promote the sustainable development of wetland ecotourism in China and plan the passenger flow in different tourism periods. This work selects Zhangye Heihe wetland ecotourism spot as the research object. Firstly, the two single wetland ecotourism Demand Prediction Models (DPMs) are proposed based on the time series of the optimized Fuzzy Clustering Algorithm (FCA), grey theory, and the Markov Chain Method. The proposed wetland ecotourism DPM simulates and predicts the ecotourism passenger flow of wetland-scenic spots and verifies the maximum passenger flow. Then, a hybrid model combining the above two single models is proposed, namely, the wetland ecotourism DPM based on an optimized fuzzy grey clustering algorithm. Further, the proposed three models predict the passenger flow in wetland ecotourism spots from 2015 to 2019. A wetland Water Quality Evaluation (WQE) model based on Deep Learning Backpropagation Neural Network (Deep Learning (DL) BPNN) is proposed to evaluate the water quality in different water periods. The results show that the hybrid model’s Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are 1.25% and 0.2532. By comparison, for two single models, the MAPE is 11.67% and 1.45%, respectively, and the RMSE is 0.2526 and 0.1652, respectively. Therefore, the mixed hybrid has the highest accuracy and stability. The water quality of the scenic spot in the wet season is obviously better than that in the dry season and flat season. It is suggested that the natural environmental factors, such as water quality and passenger flow in different periods, should be considered when formulating ecotourism development strategies.

Funder

National Social Science Foundation of China

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04

2. Application of Grey Clustering Algorithm in Wet-land Ecotourism Development;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3