Affiliation:
1. School of Economics and Management, Shihezi University, Shihezi, Xinjiang 832000, China
2. School of International Economy and Trade, Wuxi University, Wuxi 214105, China
3. School of Journalism and Communication, Sichuan International Studies University, Chongqing 400031, China
Abstract
The purpose is to promote the sustainable development of wetland ecotourism in China and plan the passenger flow in different tourism periods. This work selects Zhangye Heihe wetland ecotourism spot as the research object. Firstly, the two single wetland ecotourism Demand Prediction Models (DPMs) are proposed based on the time series of the optimized Fuzzy Clustering Algorithm (FCA), grey theory, and the Markov Chain Method. The proposed wetland ecotourism DPM simulates and predicts the ecotourism passenger flow of wetland-scenic spots and verifies the maximum passenger flow. Then, a hybrid model combining the above two single models is proposed, namely, the wetland ecotourism DPM based on an optimized fuzzy grey clustering algorithm. Further, the proposed three models predict the passenger flow in wetland ecotourism spots from 2015 to 2019. A wetland Water Quality Evaluation (WQE) model based on Deep Learning Backpropagation Neural Network (Deep Learning (DL) BPNN) is proposed to evaluate the water quality in different water periods. The results show that the hybrid model’s Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are 1.25% and 0.2532. By comparison, for two single models, the MAPE is 11.67% and 1.45%, respectively, and the RMSE is 0.2526 and 0.1652, respectively. Therefore, the mixed hybrid has the highest accuracy and stability. The water quality of the scenic spot in the wet season is obviously better than that in the dry season and flat season. It is suggested that the natural environmental factors, such as water quality and passenger flow in different periods, should be considered when formulating ecotourism development strategies.
Funder
National Social Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04
2. Application of Grey Clustering Algorithm in Wet-land Ecotourism Development;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23