Improved Butterfly Optimizer-Configured Extreme Learning Machine for Fault Diagnosis

Author:

Yu Helong1ORCID,Yuan Kang1,Li Wenshu1,Zhao Nannan1,Chen Weibin2ORCID,Huang Changcheng2ORCID,Chen Huiling2ORCID,Wang Mingjing3ORCID

Affiliation:

1. College of Information Technology, Jilin Agricultural University, Changchun 130118, China

2. College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China

3. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

Abstract

An efficient intelligent fault diagnosis model was proposed in this paper to timely and accurately offer a dependable basis for identifying the rolling bearing condition in the actual production application. The model is mainly based on an improved butterfly optimizer algorithm- (BOA-) optimized kernel extreme learning machine (KELM) model. Firstly, the roller bearing’s vibration signals in the four states that contain normal state, outer race failure, inner race failure, and rolling ball failure are decomposed into several intrinsic mode functions (IMFs) using the complete ensemble empirical mode decomposition based on adaptive noise (CEEMDAN). Then, the amplitude energy entropies of IMFs are designated as the features of the rolling bearing. In order to eliminate redundant features, a random forest was used to receive the contributions of features to the accuracy of results, and subsets of features were set up by removing one feature in the descending order, using the classification accuracy of the SBOA-KELM model as the criterion to obtain the optimal feature subset. The salp swarm algorithm (SSA) was introduced to BOA to improve optimization ability, obtain optimal KELM parameters, and avoid the BOA deteriorating into local optimization. Finally, an optimal SBOA-KELM model was constructed for the identification of rolling bearings. In the experiment, SBOA was validated against ten other competitive optimization algorithms on 30 IEEE CEC2017 benchmark functions. The experimental results validated that the SBOA was evident over existing algorithms for most function problems. SBOA-KELM employed for diagnosing the fault diagnosis of rolling bearings obtained improved classification performance and higher stability. Therefore, the proposed SBOA-KELM model can be effectively used to diagnose faults of rolling bearings.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3