Experimental Analysis and Optimization of Tribological Properties of Self-Lubricating Aluminum Hybrid Nanocomposites Using the Taguchi Approach

Author:

Selvaraj Vinoth Kumar1,Jeyanthi S.1,Thiyagarajan Raja1,Senthil Kumar M.1,Yuvaraj L.2,Ravindran P.3,Niveditha D. M.1,Gebremichael Yigezu Bantirga4ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, Tamilnadu, India

2. Department of Automobile Engineering, Acharya Institute of Technology, Bangalore 560107, Karnataka, India

3. Department of Mechanical Engineering, St. Mother Theresa Engineering College, Vagaikulam, Thoothukudi, Tamilnadu, India

4. School of Mechanical and Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Kombolcha, Ethiopia

Abstract

In recent times, tribological properties are gaining and grabbing great attention in metal matrix composites. They can provide significant benefits such as a lower coefficient of friction, wear resistance, high strength, and stiffness. Considering all these parameters, this research article mainly focuses on developing an aluminum hybrid nanocomposite material fabricated by powder metallurgy. Then, the results were examined using a pin-on-disk apparatus. Further optimization techniques such as the Taguchi approach under Design of Experiments have been adopted to obtain a minimal outcome of various assumed parameters such as A. percentage weight fraction of graphite content (Gr), B. the sliding distance, C. the sliding speed, and D. the stress applied. In addition, we have chosen parameters such as friction and wear loss for optimizing the outcome, including the main effect plots for the S-N ratio and the Analysis of Variance (ANOVA) approach. Based on the experimental results, we have noticed that friction and wear loss coefficient increase with increased applied load and sliding distance. Also, it was noted that there was a slight decrease in the coefficient of friction and wear loss when an increment was made in the graphite content, respectively. It was perceived that the sample containing 10% of graphite (Gr) could create a self-lubricating effect that significantly reduced wear loss and the coefficient of friction. Finally, by considering all these achieved results, aluminum nanocomposites can be employed in automobile, defense, and aerospace applications as they can reduce the weight of the components with improved wear behavior and more thermal stability.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3