Angry Apps: The Impact of Network Timer Selection on Power Consumption, Signalling Load, and Web QoE

Author:

Schwartz Christian1,Hoßfeld Tobias1,Lehrieder Frank1,Tran-Gia Phuoc1

Affiliation:

1. Institute of Computer Science, University of Würzburg, Chair of Communication Networks, Am Hubland, 97074 Würzburg, Germany

Abstract

The popularity of smartphones and mobile applications has experienced a considerable growth during the recent years, and this growth is expected to continue in the future. Since smartphones have only very limited energy resources, battery efficiency is one of the determining factors for a good user experience. Therefore, some smartphones tear down connectionsto the mobile network soon after a completed data transmission to reduce the power consumption of their transmission unit. However, frequent connection reestablishments caused by apps which send or receive small amounts of data often lead to a heavy signalling load within the mobile network. One of the major contributions of this paper is the investigation of the resulting tradeoff between energy consumption at the smartphone and the generated signalling traffic in the mobile network. We explain that this tradeoff can be controlled by the connection release timeout and study the impact of this parameter for a number of popular apps that cover a wide range of traffic characteristics in terms of bandwidth requirements and resulting signalling traffic. Finally, we study the impact of the timer settings on Quality of Experience (QoE) for web traffic. This is an important aspect since connection establishments not only lead to signalling traffic but also increase the load time of web pages.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3