Synthesis of Silver Nanoparticles Using Orange Peel Extract Prepared by Plasmochemical Extraction Method and Degradation of Methylene Blue under Solar Irradiation

Author:

Skiba Margarita I.1ORCID,Vorobyova Victoria I.2

Affiliation:

1. Department of Inorganic Materials Technology and Ecology, Ukrainian State University of Chemical Technology, Dnipro 49005, Ukraine

2. Department of Physical Chemistry, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine

Abstract

In pursuit of greener nanoscale research, the utilization of the reductive potency of a common byproduct of food-processing industry, i.e., orange peel, has been researched to prepare “green” silver nanoparticles (AgNPs). The synthesized AgNPs were characterized by UV-Vis spectroscopy, dynamic light scattering, and scanning electron microscopy. The results confirmed that silver nanoparticles were formed at the investigated concentrations of Ag+ (0.25–6.0 mmol/L) during 5–10 minutes, at ratio AgNO3 : extract (mL) = 1 : 1, and at 75°C. From the SEM images, the silver nanoparticles are found to be almost spherical. Powder XRD results reveal that Ag nanoparticles had a face-centered cubic crystal structure. The zeta potential value for AgNPs obtained was −21.7 mV, indicating the moderate stability of synthesized nanoparticles. The effect of pH on nanoparticle synthesis has been determined by adjusting the pH of the reaction mixtures. The catalytic effectiveness of the prepared green catalyst, AgNPs, has also been investigated in catalytic degradation of methylene blue (MB) dye. The catalytic degradation reaction under solar irradiation was completed (99%) within 35 min, signifying excellent catalytic properties of silver nanoparticles in the reduction of MB.

Funder

Ministry of Education and Science of Ukraine

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3