Running States Estimation of Autonomous Four-Wheel Independent Drive Electric Vehicle by Virtual Longitudinal Force Sensors

Author:

Xia Qiu12ORCID,Chen Long13ORCID,Xu Xing13ORCID,Cai Yingfeng13ORCID,Jiang Haobin13ORCID,Chen Te1ORCID,Pan Guangxiang2

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Mechanical and Electrical Engineering, Chunzhou University, Chuzhou 239000, China

3. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

Abstract

Exact sideslip angle estimation is significant to the dynamics control of four-wheel independent drive electric vehicles. It is costly and difficult-to-popularize to equip vehicular sensors for real-time sideslip angle measurement; therefore, the reliable sideslip angle estimation method is investigated in this paper. The electric driving wheel model is proposed and applied to the longitudinal force estimation. Considering that electric driving wheel model is a nonlinear model with unknown input, an unknown input estimation method is proposed to facilitate the longitudinal force observer design, in which the adaptive high-order sliding mode observer is designed to achieve the state estimation, the analytic formula of longitudinal force is obtained by decoupling electric driving wheel model, and the longitudinal force estimator is designed by recurrence estimation method. With the designed virtual longitudinal force sensor, an adaptive attenuated Kalman filtering is proposed to estimate the vehicle running state, in which the time-varying attenuation factor is applied to weaken the past data to the current filter and the covariance of process noise and measurement noise can be adjusted adaptively. Finally, simulations and experiments are conducted and the effectiveness of proposed estimation method is validated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3