Self-Assembled Nanoscaled Metalloporphyrin for Optical Detection of Dimethylmethylphosphonate

Author:

Wu Mingbo1,Yang Hongsheng2,Wei He1,Hu Xueli1,Qu Bo2ORCID,Chen Mei1ORCID

Affiliation:

1. Department of Biomedical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China

2. The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China

Abstract

The self-assembly approach has been widely adopted in the effort to design and prepare functional materials. Herein, we report the synthesis and optical properties of metalloporphyrin nanoparticles. Nanoscaled particles of 5,10,15,20-tetraphenylporphyrin manganese (MnTPP) and 5,10,15,20-tetraphenylporphyrin indium (InTPP) were produced in the water/dimethylsulfoxide (DMSO) mixed solution by self-assembly approach. The absorbance intensity at the characteristic peak of the monomeric and nanoscaled metalloporphyrins decreased when they interact with dimethylmethylphosphonate (DMMP). Detection limits of MnTPP and InTPP nanoparticles to DMMP were 10−9 and 10−10 L/L, respectively, and detection limits of monomeric MnTPP and InTPP to DMMP were 10−6 and 10−7 L/L, respectively. Density functional theory (DFT) calculations on MnTPP and InTPP with DMMP as axial ligands had been performed in the B3LYP/6-31g (d) approximation. Their optimized geometries and binding energies were found to depend very strongly on the central metal ion, and InTPP was more sensitive for DMMP detection in contract to MnTPP. All the experimental and theoretical results demonstrated that nanoscaled metalloporphyrin have potential prospects in determination for public safety.

Funder

Scientific Research Fund of Sichuan Provincial Education Department

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3