Metaheuristic Optimization of Fractional Order Incremental Conductance (FO-INC) Maximum Power Point Tracking (MPPT)

Author:

Ammar Hossam Hassan12,Azar Ahmad Taher34ORCID,Shalaby Raafat15ORCID,Mahmoud M. I.5

Affiliation:

1. School of Engineering and Applied Science, Nile University, Giza, Egypt

2. Smart Engineering Systems Research Center (SESC), Nile University, 12588 Shaikh Zayed City, Giza, Egypt

3. Robotics and Internet-of-Things Lab (RIOTU), Prince Sultan University, Riyadh 12435, Saudi Arabia

4. Faculty of Computers and Artificial Intelligence, Benha University, Banha, Egypt

5. Faculty of Electronic Engineering, Menofia University, Menofia, Egypt

Abstract

This paper seeks to improve the photovoltaic (PV) system efficiency using metaheuristic, optimized fractional order incremental conductance (FO-INC) control. The proposed FO-INC controls the output voltage of the PV arrays to obtain maximum power point tracking (MPPT). Due to its simplicity and efficiency, the incremental conductance MPPT (INC-MPPT) is one of the most popular algorithms used in the PV scheme. However, owing to the nonlinearity and fractional order (FO) nature of both PV and DC-DC converters, the conventional INC algorithm provides a trade-off between monitoring velocity and tracking precision. Fractional calculus is used to provide an enhanced dynamical model of the PV system to describe nonlinear characteristics. Moreover, three metaheuristic optimization techniques are applied; Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and AntLion Optimizer (ALO) are used for tuning the FO parameters of the proposed INC-MPPT. A MATLAB-Simulink-based model of the PV and optimization have been developed and simulated for different INC-MPPT techniques. Different techniques aim to control the boost DC-DC converter towards the MPP. The proposed optimization algorithms are, also, developed and implemented in MATLAB to tune the target parameters. Four performance indices are also introduced in this research to show the reliability of the comparative analysis of the proposed FO-INC with metaheuristic optimization and the conventional INC-MPPT algorithms when applied to a dynamical PV system under rapidly changing weather conditions. The simulation results show the effective performance of the proposed metaheuristic optimized FO-INC as a MPPT control for different climatic conditions with disturbance rejection and robustness analysis.

Funder

Prince Sultan University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3