A DFT Analysis on Antioxidant and Antiradical Activities from Anthraquinones Isolated from the Cameroonian Flora

Author:

Ngo Nyobe Judith Caroline1,Eyia Andiga Laurent Gael2,Mama Désiré Bikele1ORCID,Ateba Amana Baruch1ORCID,Zobo Mfomo Joseph3,Flavien Aristide Alfred Toze1,Ndom Jean Claude1

Affiliation:

1. Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon

2. Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon

3. Department of Forestry and Wood Engeneering, Advances Teachers Training College for Technical Education, University of Douala, P.O. Box 24157, Douala, Cameroon

Abstract

The present work is devoted to the exploration antioxidant and antiradical activity of twenty anthraquinones isolated from the Cameroonian flora at B3LYP/6-311++G(d,p) level of theory using the B3LYP/6-31 + G(d,p) geometrical data as geometry optimization starting points. The single electron transfer mechanism has been adopted to examine both biological activities. The classification of the antiradical profile to integrate the electrodonating power (ω), electroaccepting power (ω+), donor index (Rd) and acceptor index (Ra) has been performed using the donor-acceptor map (DAM). The antioxidant and radical powers of compounds analyzed have been compared to that of two classical vitamins (vitamin C and gallic acid). The stability of each anthraquinone derivative of the molecular library has been developed according to thermodynamic and kinetic concepts. The global reactivity descriptors (GRDs; electrophilicity index (ω), electronegativity (χ), global softness (S), and global hardness (η)) have been used to analyze the reactivity. The topological analysis of optimized structures indicates that the strength of the hydrogen bonds formed is situated between 44.205 and 52.001 kJ/mol. Our B3LYP results reveal that 3-methoxy-1-vismiaquinone (in a configuration without hydrogen bond) exhibits the best antioxidant capacity in gas phase. A comparison between antioxidant performance of molecules examined and that of classical vitamins (gallic acid, caffeic acid, ferulic acid, and ascorbic acid (vitamin C)) displayed the fact that the single electron transfer (SET) mechanism is more prominent for compounds of the molecular library analyzed. In the same vein, the antiradical behaviors of anthraquinone derivatives have shown to be higher than that of gallic acid and vitamin C in gas phase and water. The 5,8-dihydroxy-2-methylantraquinone structure in a configuration bearing one hydrogen bond has been found to be the best antiradical of the series in aqueous solution.

Funder

Ministère de l'Enseignement Supérieur, Republique du Cameroun

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3