Tinidazole Delivery Improved by Nanosized Minicells Originated fromLeuconostoc mesenteroides

Author:

Vu Kinh Luan1,Nguyen Anh Dung2,Romero Jovel Santa3,Nguyen Hoang Khue Tu1ORCID

Affiliation:

1. School of Biotechnology, Department of Biotechnology, International University, Vietnam National University-Ho Chi Minh City, Vietnam, Quarter 6, Linh Trung ward, Thu Duc district, Ho Chi Minh city, Vietnam

2. Faculty of Natural and Sciences, Thu Dau Mot University, No 6, Tran Van On street, Phu Hoa ward, Thu Dau Mot city, Vietnam

3. National Scientific Research Center of El Salvador, Alameda Juan Pablo II y Calle Guadalupe, Plan Maestro Edif. A4, 3er Nivel DNICTI, San Salvador, El Salvador

Abstract

A nanoparticle originating from natural products used as a drug delivery is considered as one of the indispensable issues in the pharmaceutical field. Increasing the bioavailability of a drug and prolonging the effect of the drug are important. Tinidazole is an antifungal agent that has absorption interfered by food. This study reported the ability ofLeuconostoc mesenteroidesVTCC B-871 in producing nanosized minicells used as drug delivery for tinidazole to improve the passage to the eaten mouse intestinal membrane. By using a scanning electron microscope and a transmission electron microscope, the morphology of the minicell loading drug was observed. The spherical shape and size (400 nm) of minicells did not change over time when kept in buffered saline gelatin and packaged with tinidazole. Based on Box-Behnken design, the optimal conditions were selected for actual encapsulation. Minicells could encapsulate tinidazole approximately to 90% which was determined by high-performance liquid chromatography analysis. The maximal concentration of tinidazole released from minicells was 70% at pH 3.4 and 55% at pH 7.2, respectively. The absorption ability of tinidazole packaging minicells was quantified in mice. Tinidazole loading minicells could be absorbed faster than tinidazole alone in fed mice via oral administration. The study assessed that the absorption of water-insoluble tinidazole could be improved byLeuconostocminicells without inhibition by food effects.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3