Affiliation:
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2. Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
Abstract
Reinforcement learning (RL) has shown great potential for motorway ramp control, especially under the congestion caused by incidents. However, existing applications limited to single-agent tasks and based onQ-learning have inherent drawbacks for dealing with coordinated ramp control problems. For solving these problems, a Dyna-Qbased multiagent reinforcement learning (MARL) system named Dyna-MARL has been developed in this paper. Dyna-Qis an extension ofQ-learning, which combines model-free and model-based methods to obtain benefits from both sides. The performance of Dyna-MARL is tested in a simulated motorway segment in the UK with the real traffic data collected from AM peak hours. The test results compared with Isolated RL and noncontrolled situations show that Dyna-MARL can achieve a superior performance on improving the traffic operation with respect to increasing total throughput, reducing total travel time and CO2emission. Moreover, with a suitable coordination strategy, Dyna-MARL can maintain a highly equitable motorway system by balancing the travel time of road users from different on-ramps.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献