Nonlinear Response and Collapse Analysis of Double-Channel Aqueduct under Strong Earthquake

Author:

Wu Chong12ORCID,Zhang Jinpeng3,Xu Jianguo1ORCID,Zhang Chunyu1,Geng Yupeng3

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, China

2. Zhengzhou Railway Technician College, Zhengzhou, China

3. Henan Puze Expressway Co. Ltd., Puyang, China

Abstract

As a common water conveyance structure, aqueduct is widely used in cross-regional water conveyance and diversion projects. However, large double-trough aqueduct structures are prone to damage under earthquake, resulting in water leakage and even interruption, endangering the safety of people’s lives and property in surrounding areas. In this paper, the nonlinear reinforced-concrete material program is compiled based on the FORTRAN language. Taking the Shuangji River aqueduct project as an example, the numerical model of the fiber beam element of the double-trough aqueduct structure is established, and the nonlinear dynamic time-history response analysis of different ground motion inputs is carried out. Based on the midspan displacement and acceleration time history, pier bottom bending moment and shear force time history, the nonlinear response law of large aqueduct structure is studied. A criterion for determining the overall collapse of aqueduct structure based on effective energy is proposed. The correctness and feasibility of the nonlinear numerical model of the aqueduct structure and the dynamic catastrophe analysis method are verified by focusing on the overall seismic response of the aqueduct structure and the material yield status of key parts, and comparing with the collapse criterion based on the limit value of pier top displacement angle. The conclusions will provide a basis for seismic analysis, optimization design, and operation and maintenance safety assessment of large aqueduct structures and have important theoretical significance and engineering application value.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference27 articles.

1. Experimental Study on Structure Water Support Interaction of Large Aqueduct

2. Design Optimization of Concrete Aqueduct Structure considering Temperature Effects

3. Analysis of vertical seismic effect of large aqueduct;Y. Li;Earthquake Engineering and Engineering Vibration,2008

4. Simulation analysis of quasi-dynamic test of aqueduct;Z. Li;Journal of Vibration Engineering,2013

5. Seismic response analysis of truss-aqueduct-water three-dimensional coupling system;Y. Wu;Journal of Hydraulic Engineering,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3