Measurement Matrix Optimization via Mutual Coherence Minimization for Compressively Sensed Signals Reconstruction

Author:

Wei Ziran123ORCID,Zhang JianlinORCID,Xu ZhiyongORCID,Liu Yong2,Okarma Krzysztof

Affiliation:

1. Key Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

2. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

For signals reconstruction based on compressive sensing, to reconstruct signals of higher accuracy with lower compression rates, it is required that there is a smaller mutual coherence between the measurement matrix and the sparsifying matrix. Mutual coherence between the measurement matrix and sparsifying matrix can be expressed indirectly by the property of the Gram matrix. On the basis of the Gram matrix, a new optimization algorithm of acquiring a measurement matrix has been proposed in this paper. Firstly, a new mathematical model is designed and a new method of initializing measurement matrix is adopted to optimize the measurement matrix. Then, the loss function of the new algorithm model is solved by the gradient projection-based method of Gram matrix approximating an identity matrix. Finally, the optimized measurement matrix is generated by minimizing mutual coherence between measurement matrix and sparsifying matrix. Compared with the conventional measurement matrices and the traditional optimization methods, the proposed new algorithm effectively improves the performance of optimized measurement matrices in reconstructing one-dimensional sparse signals and two-dimensional image signals that are not sparse. The superior performance of the proposed method in this paper has been fully tested and verified by a large number of experiments.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3