Affiliation:
1. College of Computer and Information Technology, Xinyang Normal University, Henan 464200, China
2. Supercomputing Center of Chinese Academy of Sciences, Beijing 100190, China
Abstract
This paper presents a parallel, GPU-based, deforming mesh-enabled unsteady numerical solver for solving moving body problems by using OpenACC. Both the 2D and 3D parallel algorithms based on spring-like deforming mesh methods are proposed and then implemented through OpenACC programming model. Furthermore, these algorithms are coupled with an unstructured mesh based, implicit time scheme integrated numerical solver, which makes the full GPU version of the solver capable of handling unsteady calculations with deforming mesh. Experiments results show that the proposed parallel deforming mesh algorithm can achieve over 2.5x speedup on K20 GPU card in comparison with 20 OpenMP threads on Intel E5-2658 V2 CPU cores. And both 2D and 3D cases are conducted to validate the efficiency, correctness, and accuracy of the present solver.
Funder
National Natural Science Foundation of China
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献