Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS

Author:

Batula Alyssa M.1ORCID,Mark Jesse A.2ORCID,Kim Youngmoo E.1,Ayaz Hasan234ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA

2. School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA

3. Department of Family and Community Health, University of Pennsylvania, 3737 Market Street, Philadelphia, PA 19104, USA

4. Division of General Pediatrics, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA

Abstract

Motor-activity-related mental tasks are widely adopted for brain-computer interfaces (BCIs) as they are a natural extension of movement intention, requiring no training to evoke brain activity. The ideal BCI aims to eliminate neuromuscular movement, making motor imagery tasks, or imagined actions with no muscle movement, good candidates. This study explores cortical activation differences between motor imagery and motor execution for both upper and lower limbs using functional near-infrared spectroscopy (fNIRS). Four simple finger- or toe-tapping tasks (left hand, right hand, left foot, and right foot) were performed with both motor imagery and motor execution and compared to resting state. Significant activation was found during all four motor imagery tasks, indicating that they can be detected via fNIRS. Motor execution produced higher activation levels, a faster response, and a different spatial distribution compared to motor imagery, which should be taken into account when designing an imagery-based BCI. When comparing left versus right, upper limb tasks are the most clearly distinguishable, particularly during motor execution. Left and right lower limb activation patterns were found to be highly similar during both imagery and execution, indicating that higher resolution imaging, advanced signal processing, or improved subject training may be required to reliably distinguish them.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3