Study on the Correlation of Vibration Properties and Crack Index in the Health Assessment of Tunnel Lining

Author:

Wu Xuezhen12,Jiang Yujing12ORCID,Masaya Kusaba1,Taniguchi Tetsuya3,Yamato Takahide4

Affiliation:

1. Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

2. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

3. West Nippon Expressway Engineering Kyushu Co., Ltd., Fukuoka 810-0073, Japan

4. West Nippon Expressway Co., Ltd., Nagasaki 854-0063, Japan

Abstract

This paper examines the correlation of vibration properties and crack index of tunnel lining in evaluating risk of collapsing. The visual inspection method, which was widely used, was not reliable enough as the stability of tunnel lining was influenced by the voids and the cracks that were invisible. A new method for the health assessment of tunnel lining was proposed, which can evaluate the whole structural condition according to the vibration properties of tunnel lining. A series of field tests were conducted to evaluate the validity of this new method and to make a comparative analysis with the visual inspection test results. The resultant average spectrum (RAS) of tunnel lining was identified according to the acceleration data of ambient vibration test of Hidake Tunnel in Japan. The tunnel lining crack index (TCI) was also obtained by digital visual inspection test. The correlation between the vibration characteristics and the crack index of tunnel lining was confirmed. However, the voids and the cracks on the inside of the lining were neglected in visual inspection test, which could pose a serious threat to tunnel safety. The vibration measurements by seismometer are an effective way to evaluate the global stability of tunnel lining.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3