Affiliation:
1. Department of Chemistry and Nanoscale Sciences and Technology Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
Abstract
The hybrid density functional (B3LYP/6-31G(d, p)) method was used to understand why 1,2-dimethyl dodecahedrane has not been reported yet. From the direct dimethyl substitution of the dodecahedrane cage, we could have five C20H18(CH3)2 derivatives which were geometrically optimized without constraints. The results suggest that 1,16-dimethyl dodecahedrane derivative is the most stable, whereas the 1,2-dimethyl derivative is the most unstable; this implies that the distortion due to steric hindrance interactions would be a crucial effect on the relative energies of the dimethyl dodecahedranes. It would be disadvantaged thermodynamically for 1,2-dimethyl derivative that, in the experimental results, was not synthesized yet. The LUMO of each of the derivatives was equivalently delocalized over the void within the cage, implying that dimethyl derivatives are able to encapsulate atoms at the center of the cage. The HOMO was limitedly delocalized on the cage. The characteristics of the HOMO of derivatives show three patterns, implying that each derivative might undergo one of three entirely different sets of characteristic chemical reactions with electrophilic reagents.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献