Exploring the Potential of Exome Sequencing in Idiopathic Azoospermia: A Genetic Burden and Network Analysis Study

Author:

Alkšere Baiba1ORCID,Puzuka Agrita1ORCID,Lazovska Marija1ORCID,Vainselbaum Ninel Miriam2ORCID,Vasiļonoks Jānis Kristaps1ORCID,Penka Elvita1ORCID,Fodina Violeta34,Ērenpreiss Juris13ORCID

Affiliation:

1. Department of Biology and Microbiology, Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia

2. Department of Biology and Microbiology, Scientific Laboratory of Molecular Genetics, Latvian Biomedical Research and Study Centre, Riga, Latvia

3. Department of Biology and Microbiology, Scientific Laboratory of Molecular Genetics, iVF Riga Clinic, Riga, Latvia

4. Department of Biology and Microbiology, Scientific Laboratory of Molecular Genetics, University of Latvia, Riga, Latvia

Abstract

The purpose of this study was to investigate the linkage of the association of azoospermia phenotype with genetic alterations, involved in genome instability. Male infertility is a multifactorial pathology, and genetic alterations might be the underlying factors in majority of cases of severe male infertility. The recent emergence of next-generation sequencing offers an opportunity to analyze many genes and their interactions at once, and whole-exome sequencing (WES) together with whole-genome sequencing (WGS) was recently suggested for implementation of diagnosis workup in severe infertility cases. However, the reports on WES in conjunction with burden tests and gene network analysis are scarce or lacking in cases of severe male infertility. WES was performed on 21 nonobstructive azoospermia patients. DNA samples were sequenced using the Twist Comprehensive Exome Panel. Genetic burden test was performed with Testing Rare vAriants using Public Data. Protein interactions were investigated with ConsensusPathDB and Cytoscape. For single nucleotide variants and copy number variations (CNV) analysis, samples were analyzed with the Illumina’s BaseSpace Variant Interpreter. Genetic variant burden was found elevated in 1,473 genes out of 30,000 known testis expressed genes. Three hundred and two genes with increased loss-of-function (LoF) variant set were present in more than one sample. Overrepresentation analysis with pathway-based set of genes with high variant burden demonstrated 26 pathways. Overrepresentation analysis with protein complex-based gene sets obtained 14 sets, showing the involvement in cell proliferation and DNA repair. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) network analysis with Cytoscape identified two clusters: (1) genes, involved in DNA binding/condensation and repair processes and (2) genes with the role in ribosome biosynthesis and gene expression processes. Increased loss of function germline variant burden and sumoylation may have critical significance in spermatogenesis. These parameters may be used for focused diagnosis in nonobstructive azoospermia patients. This may have both general significance for the decreased organism functionality but in particular is critical in spermatogenesis.

Funder

Latvijas Zinātnes Padome

Publisher

Hindawi Limited

Subject

Urology,Endocrinology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3