Dynamic Modeling of Unmanned Underwater Vehicles with Online Disturbance Compensation Scheme

Author:

Azid Sheikh Izzal12ORCID,Mehta Utkal3ORCID,Kuar Adarsh3,Ali Zahid3

Affiliation:

1. School of Engineering and Energy, Murdoch University, Perth, Australia

2. North Australia Centre for Autonomous Systems, Charles Darwin University, Darwin, Australia

3. Electrical and Electronics Engineering, University of the South Pacific, Laucala Campus, Suva, Fiji

Abstract

With the advancement in robotics technology over the recent years, underwater robots’ design and development are gaining interest. Unmanned underwater vehicles (UUVs) have many applications in aquaculture, deep-sea exploration, research, and enhanced rescue tasks. However, various factors must be considered when developing any underwater vehicle system to explore the deep ends of the underwater world. In this paper, we develop the most suitable model for understanding various system parameters. The new mathematical model considers certain constraints and external disturbances exerted on the system. Also, a control strategy is suggested for the UUV’s stability and robustness. The suggested observer and model are simple, allowing for accurate estimations of all system states and the global impacts of unknown limped perturbations with a minimal computational cost.

Funder

Charles Darwin University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3