Affiliation:
1. College of Command Information Systems, PLA University of Science & Technology, Nanjing, Jiangsu, China
Abstract
Community detection is of great importance which enables us to understand the network structure and promotes many real-world applications such as recommendation systems. The heterogeneous social networks, which contain multiple social relations and various user generated content, make the community detection problem more complicated. Particularly, social relations and user generated content are regarded as link information and content information, respectively. Since the two types of information indicate a common community structure from different perspectives, it is better to mine them jointly to improve the detection accuracy. Some detection algorithms utilizing both link and content information have been developed. However, most works take the private community structure of a single data source as the common one, and some methods take extra time transforming the content data into link data compared with mining directly. In this paper, we propose a framework based on regularized joint nonnegative matrix factorization (RJNMF) to utilize link and content information jointly to enhance the community detection accuracy. In the framework, we develop joint NMF to analyze link and content information simultaneously and introduce regularization to obtain the common community structure directly. Experimental results on real-world datasets show the effectiveness of our method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献