Efficient Community Detection in Heterogeneous Social Networks

Author:

Li Zhen1,Pan Zhisong1ORCID,Zhang Yanyan1,Li Guopeng1,Hu Guyu1ORCID

Affiliation:

1. College of Command Information Systems, PLA University of Science & Technology, Nanjing, Jiangsu, China

Abstract

Community detection is of great importance which enables us to understand the network structure and promotes many real-world applications such as recommendation systems. The heterogeneous social networks, which contain multiple social relations and various user generated content, make the community detection problem more complicated. Particularly, social relations and user generated content are regarded as link information and content information, respectively. Since the two types of information indicate a common community structure from different perspectives, it is better to mine them jointly to improve the detection accuracy. Some detection algorithms utilizing both link and content information have been developed. However, most works take the private community structure of a single data source as the common one, and some methods take extra time transforming the content data into link data compared with mining directly. In this paper, we propose a framework based on regularized joint nonnegative matrix factorization (RJNMF) to utilize link and content information jointly to enhance the community detection accuracy. In the framework, we develop joint NMF to analyze link and content information simultaneously and introduce regularization to obtain the common community structure directly. Experimental results on real-world datasets show the effectiveness of our method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference14 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Social Analysis of Thailand's 2023 Election Through Twitter Feeds;2023 15th International Conference on Information Technology and Electrical Engineering (ICITEE);2023-10-26

2. Community Detection in Multidimensional and Multilayer Networks;Principles of Social Networking;2021-08-19

3. Relational intelligence recognition in online social networks — A survey;Computer Science Review;2020-02

4. RMMDI: A Novel Framework for Role Mining Based on the Multi-Domain Information;Security and Communication Networks;2019-06-11

5. Combination of links and node contents for community discovery using a graph regularization approach;Future Generation Computer Systems;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3