Experimental Study of Single Structure Surface Dangerous Rock Mass Dynamic Characteristics Based on Constant Micromotion

Author:

Shi Anchi12,Xie Mowen3ORCID,Zhao Liuyuan12,Zhang Xiaoyong3,Wu Zhixiang3ORCID,Wu Simiao3

Affiliation:

1. PowerChina Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 311122, China

2. Zhejiang Huadong Construction Engineering Corporation Limited, Hangzhou, Zhejiang 310004, China

3. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The dynamic parameters of a dangerous rock mass reflect the degree of damage of the structure of its surface. There is still an urgent problem to identify the dynamic parameters of a dangerous rock mass based on the characteristics of the constant micromotion at its site. To address this problem, a method is proposed to identify the dynamic characteristics of a dangerous rock mass undergoing excitation caused by constant micromotion: (1) the vibration of a dangerous rock mass undergoing excitation from constant micromotion is classified as forced undamped structural vibration with a single degree of freedom. The ratio of the amplitude of the spectrum of the dangerous rock mass to the amplitude of the spectrum of the bedrock is defined as the relative amplitude spectrum. The first-order natural frequency is identified from the relative amplitude spectrum. (2) Bedrock is the source of excitation of a dangerous rock mass. When a mechanical wave propagates to a dangerous rock mass, it crosses the porous surface of media with structural damage, and mechanical wave scattering occurs. The frequency domain of the mechanical wave changes. The center frequency shifts to a low frequency. By means of laboratory model tests, the changes in the dynamic parameters of models of a cantilevered dangerous rock mass and a sliding dangerous rock mass with structural surface damage are analyzed. It is concluded that (1) based on the theory of vibration mechanics, the first-order natural frequencies of dangerous rock masses can be obtained from their relative amplitude spectra. The first-order natural frequencies of dangerous rock masses undergoing constant micromotion are measurable. (2) The damage of the structural surface of a dangerous rock mass with macroscopic fractures can be identified by its first-order natural frequency. The center frequency cannot reflect the development of fractures. The damage of the structure of the surface of a dangerous rock mass with microscopic fractures can be identified by the change in the center frequency in its high-frequency band. The first-order natural frequency cannot reflect the development of fractures. (3) There are limitations in using single vibration mechanics theory or elastic wave scattering theory to analyze the damage of the structure of the surface of a dangerous rock mass; it is more effective to integrate both methods.

Funder

Key Science and Technology Plan Project of PowerChina Huadong Engineering Corporation Limited

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3