Abstract
Liquid leaf targets show promise as high repetition rate targets for laser-based ion acceleration using the Target Normal Sheath Acceleration (TNSA) mechanism and are currently under development. In this work, we discuss the effects of different ion species and investigate how they can be leveraged for use as a possible laser-driven neutron source. To aid in this research, we develop a surrogate model for liquid leaf target laser-ion acceleration experiments, based on artificial neural networks. The model is trained using data from Particle-In-Cell (PIC) simulations. The fast inference speed of our deep learning model allows us to optimize experimental parameters for maximum ion energy and laser-energy conversion efficiency. An analysis of parameter influence on our model output, using Sobol’ and PAWN indices, provides deeper insights into the laser-plasma system.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献