Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics

Author:

Yang Chao1,Zhang Yuliang1ORCID,Zhan Xianyuan2,Ukkusuri Satish V.3,Chen Yifan4

Affiliation:

1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai, China

2. JD Intelligent City Research, Beijing, China

3. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA

4. Institute of Transport Studies, Department of Civil Engineering, Monash University, Melbourne, Australia

Abstract

A key issue to understand urban system is to characterize the activity dynamics in a city—when, where, what, and how activities happen in a city. To better understand the urban activity dynamics, city-wide and multiday activity participation sequence data, namely, activity chain as well as suitable spatiotemporal models, are needed. The commonly used household travel survey data in activity analysis suffers from limited sample size and temporal coverage. The emergence of large-scale spatiotemporal data in urban areas, such as mobile phone data, provides a new opportunity to infer urban activities and the underlying dynamics. However, the challenge is the absence of labeled activity information in mobile phone data. Consequently, how to fuse the useful information in household survey data and mobile phone data to build city-wide, multiday, and all-time activity chains becomes an important research question. Moreover, the multidimension structure of the activity data (e.g., location, start time, duration, type) makes the extraction of spatiotemporal activity patterns another difficult problem. In this study, the authors first introduce an activity chain inference model based on tensor decomposition to infer the missing activity labels in large-scale and multiday activity data, and then develop a spatiotemporal event clustering model based on DBSCAN, called STE-DBSCAN, to identify the spatiotemporal activity patterns. The proposed approaches achieved good accuracy and produced patterns with a high level of interpretability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3