Affiliation:
1. School of Automation, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
Abstract
This work investigates the finite-time control problem for a nonlinear four-tank cross-coupled liquid level system by the port-controlled Hamiltonian (PCH) model. A fixed-free methodology is exhibited which can be used to simplify the controller design procedure. To get an adjustable convergent gain of the finite-time control, a feasible technique named damping normalization is proposed. A novel parameter autotuning algorithm is given to clarify the principle of choosing parameters of the PCH method. Furthermore, a finite-time controller is designed by a state-error desired Hamiltonian function, and the relationship between the settling time and a parameter is given, which can be applied in practical engineering easily to adjust the settling time according to the industrial need. Finally, simulation and experimental results verify the effectiveness of the proposed algorithm.
Funder
National Key Research and Development Plan of China
Subject
Multidisciplinary,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献